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Lecture Three: Standard Error of KM Estimate and Estimating  

                                 Hazard Function 

 

1. Standard Error and Confidence interval for )(ˆ tS  

 
We also need to know about how good it’s the (KM) estimate. A common way is to 

estimate the sample variation or standard error of the estimate )(ˆ tS .  

 

Use the derivation at page 26-27: Steps: 

 

 Take log  transformation of KM estimate 

 # of survivals, nj – dj, through the interval beginning at t(j) has  

 Binomial(nj, jp̂ ), where jp̂  = 1 – dj/nj 

 Obtain the variance of log jp̂  by the delta-method: 
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 which is known as the Taylor series approximation to the variance of a function  

             of a random variable. 

 Standard error (S.E.): square-root of variance estimate. 

 

With the estimated standard error, a (1 - )100% confidence interval for )(ˆ tS  

at each time point t can be easily constructed, based on a typical normal 

approximation (meaning?). When we link the upper and lower confidence limits 

together along the time axis, we form a so-called confidence band. This can be 

done on different scales as implemented in Splus and SAS (PROC LIFETEST: 

conftype, confband options in SURVIVAL statement). 

 

 Original scale: S (t). 

o Confidence interval for )(ˆ
jtS  at  tj 

CI = )(ˆ
jtS   2/z *S.E. ( )(ˆ

jtS ) 

o Although S (t) should be in [0, 1], the lower and upper limit can be 

out of the range. A practical solution to this problem is to replace any 

limit that greater than 1 by 1, and any limit that is less than zero by 

0.0. 

 

 Log-scale: log S (t). 

o Confidence interval for log )(ˆ
jtS  

       CIlog = log )(ˆ
jtS   2/z *S.E. (log )(ˆ

jtS ) 

o Converting CIlog back to the original scale to have CI for )(ˆ
jtS  

CI = exp (CIlog) =? 
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o Where the lower bound is always  nonnegative, the upper bound may 

exceed 1 

 

 Log-log scale: log (-log )(ˆ
jtS ). 

 

o Obtain the standard error for log(-log )(ˆ
jtS ) by the delta-method 

o Confidence interval CIlog-log for log(-log )(ˆ
jtS ) by the normal 

approximation 

o Convert CIlog-log to have CI for )(ˆ
jtS  

 

CI = exp (-exp (CIlog-log)) 

 

o Lower limit >= 0 and upper limit <= 1 

o Appropriate with moderate to large sample size because of repeated 

use of the delta-method. 

 

             The Greenwood variance estimate is appropriate only when the expected risk set 

              size nj is fairly large at each time point t (j) because the use of the delta-method  

               requires large sample size.  As nj gets smaller with increasing time, the 

               Greenwood estimate becomes unstable at the tail. (Cut the tail out requested  

                by investigators, reasonable?) 

 

 In Splus, use option “conf.type” in “survfit()” to choose different methods 

 In SAS, use conftype option in the PROC LIFETEST statement. 

 

 Example: IUD  
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                 Splus code: 

                             iud.s<-function (){ 

                            tmpdf <- importData("../sdata/iud.sas7bdat") 

                            motif() 

                            par(mfrow=c(2,2)) 

                            iud.km1 <- survfit(Surv(survt, censor), conf.type="plain",  

                                          type="kaplan-meier", data=tmpdf) 

                            plot(iud.km1,xlab="Discontinuation time", 

                                       ylab="Estimated survival Function", xlim=c(0, 120), 

                                            ylim=c(0,1),mark.time=T, conf.int=T,   

                                              main=”Original scale”) 

                            iud.km2 <- survfit(Surv(survt, censor), conf.type="log",  

                                              type="kaplan-meier", data=tmpdf) 

                            plot(iud.km2,xlab="Discontinuation time", 

                                             ylab="Estimated survival Function", xlim=c(0, 120) ,    

                      ylim=c(0,1),mark.time=T, conf.int=T, main=”log scale”) 

                            iud.km3 <- survfit(Surv(survt, censor), conf.type="log-log", 

                                       type="kaplan-meier", data=tmpdf) 

                            plot(iud.km3,xlab="Discontinuation time", 

                                    ylab="Estimated survival Function", xlim=c(0, 120), 

                                    ylim=c(0,1),mark.time=T, xmax= 100, conf.int=T, 

                                    main=”log-log scale”) 

                       } 

 

2. Estimating the hazard function 

 

 Life-table estimate of the hazard function 

 

o Dividing the period of observation into a series of time intervals: 
'

jt  to '

1jt , j = 1, 2, …,m, with length j 

o jd  deaths, cj censored  in ( '

jt , '

1jt ] and nj at risk at the start of 

the j’th interval 

o Assume censored times occur uniformly (i.e. U(0, cj)) through 

the j’th interval, then average number of individual at risk is 

2/'

jjj cnn   

o Assuming the death rate is constant during the j’th interval 

o The average hazard of death per unit time can be estimated by  
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                                    for mjttt jj ,...,2,1,'

1

'  
, where  jjj dn )2/( '   is the average 

                                     time survived in ( '

jt , '

1jt ]. 
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 Kaplan-Meier Type Estimate 

 

Let the observed survival times: t1, t2, … , tn and r ordered death times: 

t(1) < t(2) < … < t(r); nj at risk just before  t(j), dj deaths at the j’th death 

time 

o Assuming constant hazard between successive death times 

o The hazard can be estimated by 

 

jj

j

n

d
th


)(ˆ , 

                                 for )1()(  jj ttt , where )()1( jjj tt    

 

o No estimate for t > t(r) 

o Proof: The conditional death probability for )1(  jj tTt is 

jth )(ˆ , which is dj/nj 

 Kernel-smoothed estimate 

 

o Above estimates are rather irregular 

o Using smoothing techniques (ref: Smoothing Methods in Statistics,  

                        1996, Simonoff JS). 

o A weighted average of values of the estimated hazard )(ˆ th at death  

                        times in the neighborhood of t. 

 

 Estimating the cumulative hazard function 

 

o Use relation )(log)( tStH   and KM estimate of survivor 

function 
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o Use Taylor series expansion of log(1 – x), and ignore higher-order 

terms when x is small 

o 
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)(ˆ , which is called Nelson-Aalen estimate. 

3. Estimating the median, mean and percentiles of survival times 

 

 Median survival time: defined as smallest observed survival time for 

which the value of the estimated survival function is less than 0.5 

 In math term 

 

                  }5.0)(ˆ|min{)50(ˆ  ii tStt  

 

                        where ti is the observed survival time for the i’th individual, I = 1, …, n 



 5 

months after treatment
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 What if 5.0)(ˆ tS  for any t > 0? 

 Mean:  
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 p’th percentile: Defined to be the value t(p), such that F{t(p)} = p/100. 

In terms of survival, t(p) is such that S{t(p)} = 1 – (p/100) 

 The p’th percentile of the estimated survival: 

 

)}100/(1)(ˆ|min{)(ˆ ptStpt ii 
 

 Example: Medians of two treatment groups of prostatic cancer patients 

(Table 1.4, p10). Use the plot from lecture one 

 

 Confidence intervals for the median and percentiles by the delta-

method. 


